[11:00-] Z transform (Part 2)

The z-domain is a generalization of the frequency domain, and the z-transform is the generalization of the discrete-time Fourier transform. The z-transform converts convolution and difference equations into polynomials. The transfer function in the z-domain describes how an LTI system transfers input frequencies to output frequencies.

$$X(z) = \mathcal{Z}\{x[n]\} = \sum_{k=-\infty}^{\infty} x[k]z^{-k}$$

Instead of using a formula, the inverse z-transform is more easily computed using a table of known transforms and properties.

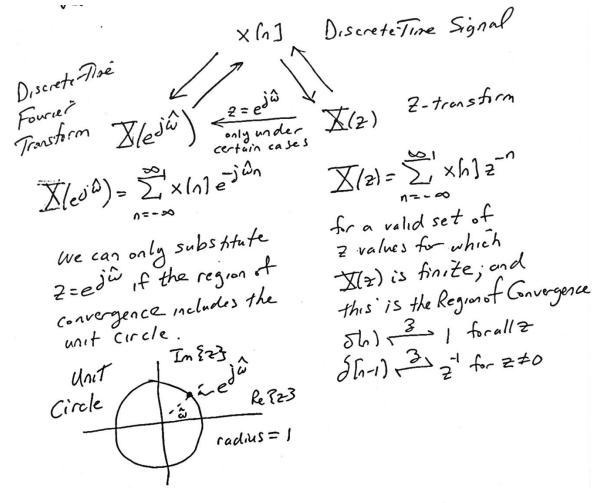
Time domain: $x[n]$	z-domain: $X(z)$	ROC
$\frac{\text{Finite-length signal}}{x[n] = \sum_{k=0}^{N} x[k] \delta[n-k]}$	Polynomial with powers of z $X(z) = \sum_{k=0}^{N} x[k]z^{-k}$	
$\frac{\text{Unit impulse}}{x[n] = \delta[n]}$	$\frac{Constant}{X(z) = 1}$	All z
Impulse delayed by n_0 $\frac{\text{samples}}{x[n] = \delta[n - n_0]}$	z raised to the power of n_0 $X(z) = z^{-n_0}$	$z \neq 0$
Two-point impulse response $h[n] = h[0]\delta[n] + h[1]\delta[n-1]$	$\frac{\text{Polynomial in } z^{-1}}{H(z) = h[0] + h[1]z^{-1}}$	$z \neq 0$
$\frac{\text{M-point FIR filter}}{\displaystyle\sum_{k=0}^{M}b_{K}\delta[n-k]}$	$\frac{\text{Polynomial in } z^{-1}}{\sum_{k=0}^{M} b_k z^{-k}}$	$z \neq 0$
Linear combination in time $\frac{\text{domain}}{ax_1[n] + bx_2[n]}$	Linear combination in z $\frac{\text{domain}}{aX_1(z) + bX_2(z)}$	ROC of $X_1(z)$ \cap ROC of $X_1(z)$

[11:10] Relation between z domain and frequency domain

If $e^{j\hat{\omega}}$ is in the valid set of z values (region of convergence), the frequency response is

$$H(e^{j\widehat{\omega}}) = H(z)|_{z=e^{j\widehat{\omega}}}$$

In MATLAB, the freqz command performs this substitution to compute the frequency response, but does not check if the substitution is valid.



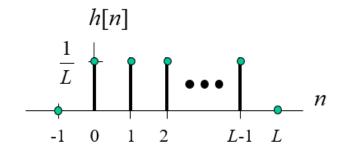
LTI Systems

$$X(a)$$
 $X(a)$
 $X(a)$

[11:30] Analysis of L point averaging filter

Impulse response:

$$h[n] = \frac{1}{L} \sum_{k=0}^{L-1} \delta[n-k]$$



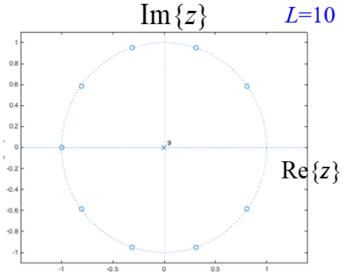
Z-transform:

$$H(z) = \frac{1}{L} \sum_{k=0}^{L-1} z^{-k} = \frac{1}{L} \frac{z^{L} - 1}{z^{L-1}(z-1)}$$

Roots of numerator (zeros): $z = e^{j2\pi k/L}$ for k = 1,2,...L - 1

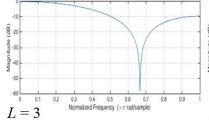
Roots of denominator (poles): z = 0 repeated L - 1 times

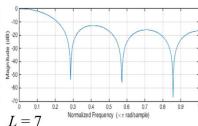
The zero at z = 1 cancels the pole at z = 1.

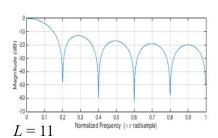


To determine the type of frequency selectivity (lowpass, bandpass, highpass, etc), we examine the magnitude response:

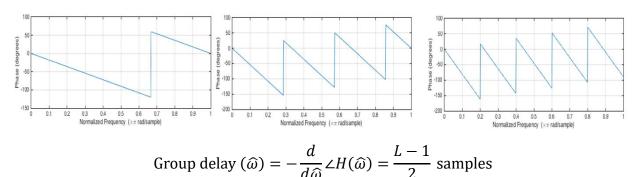
$$|H(e^{j\widehat{\omega}})| = \frac{1}{L} |e^{j\widehat{\omega}} - e^{j2\pi k/L}|$$



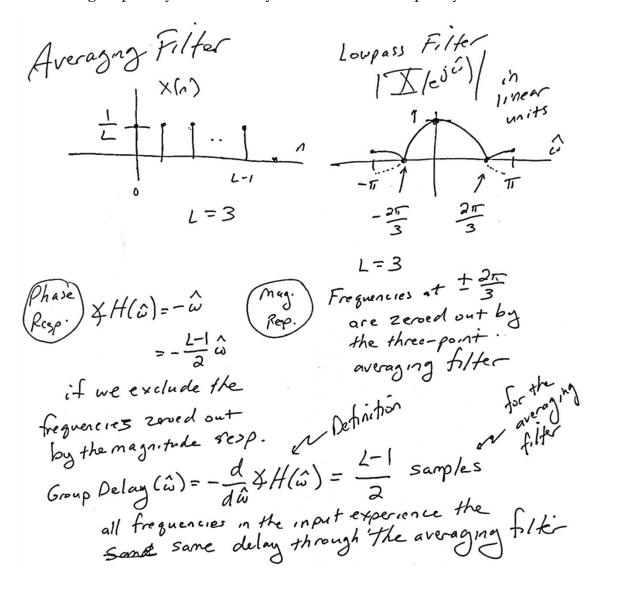




The phase response $\angle H(e^{j\widehat{\omega}})$ is linear except at $\widehat{\omega} = 2\pi k/L$. However. The magnitude response at $\widehat{\omega} = 2\pi k/L$ is zero, so the phase is linear for all frequencies that make it through the filter.



Thus, the group delay does not vary as a function of frequency.



[12:00] Demo: Audio reverb and delay

Audio Controlled Delay

